Statics of Particles

Vectors

- *Vector*: parameters possessing magnitude and direction which add according to the parallelogram law. Examples: displacements, velocities, accelerations.
- *Scalar*: parameters possessing magnitude but not direction. Examples: mass, volume, temperature
- Vector classifications:
 - Fixed or bound vectors have well defined points of application that cannot be changed without affecting an analysis.
 - *Free* vectors may be freely moved in space without changing their effect on an analysis.
 - *Sliding* vectors may be applied anywhere along their line of action without affecting an analysis.
- Equal vectors have the same magnitude and direction.
- *Negative* vector of a given vector has the same magnitude and the opposite direction.

Addition of Vectors

- Trapezoid rule for vector addition
- Triangle rule for vector addition
- · Law of cosines,

$$R^2 = P^2 + Q^2 - 2PQ\cos B$$
$$\vec{R} = \vec{P} + \vec{Q}$$

· Law of sines,

$$\frac{\sin A}{Q} = \frac{\sin B}{R} = \frac{\sin C}{A}$$

· Vector addition is commutative,

$$\vec{P} + \vec{Q} = \vec{Q} + \vec{P}$$

Vector subtraction

Statics of Particles

- Addition of three or more vectors through repeated application of the triangle rule
- The polygon rule for the addition of three or more vectors.
- Vector addition is associative,

$$\vec{P} + \vec{Q} + \vec{S} = \left(\vec{P} + \vec{Q}\right) + \vec{S} = \vec{P} + \left(\vec{Q} + \vec{S}\right)$$

• Multiplication of a vector by a scalar

Static of particles

Case one: Study of one force

If one force acted in one direction

Example: Find the resultant of force Fx

Solution:

F=Fx+Fy = Fx+0 =Fx

Example: Find the resultant of force Fy

Solution:

F=Fx+Fy = O+Fy =Fy

If the force F has an angle with the x axis

Fx=F cos Θ

Fy=F sin Ө

Results of two forces

1- The law of sines:- the magnitude of the resultant forces cab be determined from the law of cosines, and its direction is determined from the law of sines

Example: determine the magnitude of the resultant force and its direction shown in fig. below

Statics of Particles

Example: determine the magnitude of the resultant force and its direction

4

Statics of Particles

Chapter two =-48.66 N

$$R = \sqrt{R_x^2 + R_y^2} \qquad \theta = \tan^{-1} \frac{R_y}{R_x}$$
$$R = 393 \text{ N} \qquad \theta = -7.1$$

Example: The two forces act on a bolt at A. Determine their resultant.

Trigonometric solution - Apply the triangle rule.
From the Law of Cosines,

$$R^{2} = P^{2} + Q^{2} - 2PQ\cos B$$

= (40N)² + (60N)² - 2(40N)(60N)cos155°
$$R = 97.73N$$

From the Law of Sines,

$$\frac{\sin A}{Q} = \frac{\sin B}{R}$$
$$\sin A = \sin B \frac{Q}{R}$$
$$= \sin 155^{\circ} \frac{60N}{97.73N}$$
$$A = 15.04^{\circ}$$
$$\alpha = 20^{\circ} + A$$
$$\alpha = 35.04^{\circ}$$

Example : A barge is pulled by two tugboats. If the resultant of the forces exerted by the tugboats is 5000 lbf directed along the axis of the barge, determine

Statics of Particles

- a) the tension in each of the ropes for $\alpha = 45^{\circ}$,
- b) the value of α for which the tension in rope 2 is a minimum.

 Trigonometric solution - Triangle Rule with Law of Sines

<i>T</i> ₁	<i>T</i> ₂	_50001bf
sin 45°	sin 30	° sin105°
$T_1 = 366$	01bf	$T_2 = 2590 \text{lbf}$

 The minimum tension in rope 2 occurs when T₁ and T₂ are perpendicular.

$T_2 = (5000 \text{lbf}) \sin 30^\circ$	$T_2 = 2500\mathrm{lbf}$
$T_1 = (5000 \text{lbf}) \cos 30^\circ$	$T_1 = 4330\mathrm{lbf}$
$\alpha = 90^{\circ} - 30^{\circ}$	$\alpha = 60^{\circ}$

Results of three or more forces

2-Method of projections

$$\begin{array}{ll} R_x = P_x + Q_x + S_x & R_y = P_y + Q_y + S_y \\ = \sum F_x & = \sum F_y \end{array}$$

· To find the resultant magnitude and direction,

$$R = \sqrt{R_x^2 + R_y^2} \qquad \theta = \tan^{-1} \frac{R_y}{R_x}$$

Statics of Particles

Example : Four forces act on bolt *A* as shown. Determine the resultant of the force on the bolt.

SOLUTION:

· Resolve each force into rectangular components.

force	mag	x-comp	y - comp
\vec{F}_1	150	+129.9	+ 75.0
\vec{F}_2	80	-27.4	+ 75.2
\vec{F}_3	110	0	-110.0
\vec{F}_4	100	+96.6	- 25.9
		$R_{\chi} = +199.1$	$R_y = +14.3$

- Determine the components of the resultant by adding the corresponding force components.
- $R_r = (199.1 \text{ N})^{\dagger}$ Calculate the magnitude and direction.

$R = \sqrt{199.1^2 + 14.3^2}$	R = 199.6N
$\tan \alpha = \frac{14.3 \text{ N}}{14.3 \text{ N}}$	a 4 10
$\frac{199.1N}{199.1N}$	$\alpha = 4.1^{\circ}$